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Wildfire Incidents
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1,500 People Evacuated as Wildfire
Rages on Greek Island of Crete

Most of those fleeing the blaze were tourists. Firefighters
struggled against heavy winds to bring the flames under control. '
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Current Solutions
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Current Solutions

SA GE A Software-Defined Sensor Network

Cyberinfrastructure for Edge Computing

Support real-time environmental monitoring

Support data analytics and Al solutions at the edge

[Waggle IEEE 2016]

[ARMing the Edge]
[Performance Monitoring on
Sage Continuum Edge Devices]



Edge Node
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Application Deployment

d’ docker

kubernetes

e Popular option — Containerization
e Portable deployment

e |[solate application resources



Dynamic Workloads
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Dynamic Workloads

In MicroDCs, multiple applications running have diverse memory allocation and

access patterns

Data Ingestion

Data Logging & Storage

Kernel heap buffers
User-space buffers

Look-up Tables
File-backed Page Cache

Data Processing & ML

Heap allocated Tensors
Data Transfer with GPU
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Dynamic Workloads

In MicroDCs, multiple applications running have diverse memory allocation and
access patterns

Data Ingestion

Data Logging & Storage

Data Processing & ML
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Dynamic Workloads

In MicroDCs, multiple applications running have diverse memory allocation and
access patterns

Data Ingestion
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Dynamic Workloads

In MicroDCs, multiple applications running have diverse memory allocation and
access patterns

Data Ingestion
£y _
b ; " ' /‘
Data Logglng & Storage

S8 ra

Data Processmg & ML

Memory contention!!!
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Increasing Memory

e MicroDCs are deployed at the remote environment across the U.S

e (Cost constraints

e Increasing in energy consumption

o Static power - unnecessary energy when memory is not intensive

e Contributing to the embodied carbon footprint
o ~48g/GB for LPDDR4 SK Hynix
o Estimation: each 16GB DDR4 produces 768g CO2

Conflicts with sustainability objectives of hazard monitoring infrastructure.
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Outline

e Motivation
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Multitenancy

e MicroDCs are designed for near-sensor processing
e MicroDCs are the last layers of computation in SAGE
e MicroDCs are also used for ML training

e |n emergencies, edge node off-loads computing tasks (e.g., wildfire detection)
to MicroDCs

Multitenancy is a requirement, not a design choice
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Experiment
Representative applications:

Data processing & ML-based computer
vision on MicroDCs

Real-time inference over wildfire data

Heavy heap memory

\

[You Only Look Once, ArXiv 2015]
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Experiment

R

epresentative applications:

-

RocksDB

.ﬁ RocksDB

Data logging & storage on MicroDCs

Manages large volumes of sensor data,
wildfire imagery and even logs.

Relies on page cache

~

J

[Facebook, 2012]
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Multitenancy — Impact on Carbon Emission
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Avoid wasted static power

Saving operational & embodied carbon emissions
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Towards application centric carbon emission management, Sudarsun Kannan, Ulrich Kremer [HotCarbon '24]



https://dl.acm.org/doi/abs/10.1145/3604930.3605725

Multitenancy — Impact on Memory Contention

e YOLO:
o Dataset ~38k images — 7.7GB
o 8 processes do inference in parallel

e RocksDB:

o Dataset: 20 million key-value pairs — Value size 4KB — 43 GB
o Read 10 million random keys in database

1) Evaluate the performance of isolation execution
2) Evaluate the performance of shared multitenant execution
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Multitenancy — Impact on Memory Contention
Hardware: OS:

« Single-socket system * Linux 5.15

a 16-core 2.1GHz Intel(R) Xeon(R) « Supports training & inference pipelines
Silver 4110 processor

+ 48GB DRAM
« 512GB NVMe SSD

» Nvidia Quadro P5000 16GB GPU
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Multitenancy Impact on the Edge (Future Work)

Our ongoing work explores multitenancy impact on
both local edge setup and real SAGE deployments

Not discussed in this talk
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Multitenancy — Impact on Memory Contention

RocksDB
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Multitenancy — Impact on Memory Contention (

RocksDB YOLO
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Multitenancy — Impact on Memory Contention

RocksDB YOLO
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RocksDB performance reduces significantly due to reliance on page cache
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Multitenancy — Impact on Memory Contention in MicroDCs

e YOLO:
o Dataset ~38k images — 7.7GB
o 8 processes do inference in parallel
o Containerized using cgroups
o 8GB memory limits — best isolated performance

e RocksDB:
o Dataset: 20 million key-value pairs — Value size 4KB — 43 GB
o Read 10 million random keys in database
o Containerized using cgroups
o Assigned the rest of system memory

1) Evaluate the performance of isolation execution
2) Evaluate the performance of shared multitenant execution
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Memory Contention Experiment

Container RocksDB Container YOLO
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Same pattern with the previous experiment.
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Multitenancy — Impact on Memory Contention

e What did we learn?
o Asymmetric performance degradation under contention

o Static partitioning fails to consider various memory types
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Initial Design

PAMS: Multitenancy Resource Management Framework
« Unified Treatment of Memory Types
« Application-level Triggers

* Predictive Resource Allocation
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Initial Design

APP APP APP

Memory Tracking
(cgroup mem pressure, page fault)

—_—_—————— e

i Predictive Resource i
i Allocation |
i Unified Treatment of i
i Memory Types |



Unified Treatment of Memory Types

Memory Tracking
(cgroup mem pressure, page fault)

Promotes

31



Unified Treatment of Memory Types

Memory Tracking
(cgroup mem pressure, page fault)

Priority labels informing eviction and reclaim policies

Promotes
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Application-level Triggers
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App App

< states 7 states
Memory Tracking
(cgroup mem pressure, page fault)
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Predictive Resource Allocation

Memory Tracking
(cgroup mem pressure, page fault)
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Summary and Future Work

- ldentifies challenges of multi-tenancy on MicroDCs for hazard monitoring.

- Motivates the need of cross-layered approach to manage memory dynamically.

- Explore whether PAMS can be implemented without significant changes to OS.

Thanks!
Long Tran (Iht21@scarletmail.rutgers.edu)

THE STATE UNIVERSITY
OF NEW JERSEY
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