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2



Current Solutions
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Current Solutions
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• Support real-time environmental monitoring

• Support data analytics and AI solutions at the edge

[Waggle IEEE 2016]

[ARMing the Edge]
[Performance Monitoring on 
Sage Continuum Edge Devices]
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Edge Node

[Waggle Node IEEE 2016]
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Edge Node

[Waggle Node IEEE 2016]
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Limited compute

Limited memory
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Edge Node

[Waggle Node IEEE 2016]



Application Deployment

● Popular option – Containerization

● Portable deployment

● Isolate application resources
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Dynamic Workloads
In MicroDCs, multiple applications running have diverse memory allocation and 

access patterns

Data Ingestion

Data Logging & Storage

Data Processing & ML
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Kernel heap buffers

User-space buffers

Look-up Tables

File-backed Page Cache

Heap allocated Tensors

Data Transfer with GPU
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Memory contention!!!



● MicroDCs are deployed at the remote environment across the U.S

● Cost constraints

● Increasing in energy consumption

○ Static power - unnecessary energy when memory is not intensive

● Contributing to the embodied carbon footprint

○ ~48g / GB for LPDDR4 SK Hynix

○ Estimation: each 16GB DDR4 produces 768g CO2

Conflicts with sustainability objectives of hazard monitoring infrastructure.

Increasing Memory
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Outline

● Background

● Motivation

● Design

● Conclusion
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Multitenancy

● MicroDCs are designed for near-sensor processing

● MicroDCs are the last layers of computation in SAGE

● MicroDCs are also used for ML training 

● In emergencies, edge node off-loads computing tasks (e.g., wildfire detection) 

to MicroDCs

Multitenancy is a requirement, not a design choice
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Experiment

Representative applications:
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YOLO - Data processing & ML-based computer 

vision on MicroDCs

- Real-time inference over wildfire data 

- Heavy heap memory

[You Only Look Once, ArXiv 2015]



Experiment

Representative applications:
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- Data logging & storage on MicroDCs

- Manages large volumes of sensor data, 

wildfire imagery and even logs.

- Relies on page cache

RocksDB

[Facebook, 2012]



Multitenancy – Impact on Carbon Emission
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The lower

The better

Better utilization of hardware

Avoid wasted static power

Saving operational & embodied carbon emissions

Carbon emission model from 

[Architectural carbon modeling tool, 
ISCA’22]

Towards application centric carbon emission management, Sudarsun Kannan, Ulrich Kremer [HotCarbon '24]

https://dl.acm.org/doi/abs/10.1145/3604930.3605725


Multitenancy – Impact on Memory Contention 

● YOLO:

○ Dataset ~38k images – 7.7GB

○ 8 processes do inference in parallel

● RocksDB:

○ Dataset: 20 million key-value pairs – Value size 4KB – 43 GB

○ Read 10 million random keys in database
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1) Evaluate the performance of isolation execution

2) Evaluate the performance of shared multitenant execution



Multitenancy – Impact on Memory Contention
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Hardware:

• Single-socket system 

• a 16-core 2.1GHz Intel(R) Xeon(R) 
Silver 4110 processor

• 48GB DRAM

• 512GB NVMe SSD

• Nvidia Quadro P5000 16GB GPU

OS:

• Linux 5.15

• Supports training & inference pipelines



Multitenancy Impact on the Edge (Future Work) 
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Our ongoing work explores multitenancy impact on 

both local edge setup and real SAGE deployments

Not discussed in this talk



Multitenancy – Impact on Memory Contention
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RocksDB performance reduces significantly due to reliance on page cache



Multitenancy – Impact on Memory Contention in MicroDCs

● YOLO:

○ Dataset ~38k images – 7.7GB

○ 8 processes do inference in parallel

○ Containerized using cgroups

○ 8GB memory limits – best isolated performance

● RocksDB:

○ Dataset: 20 million key-value pairs – Value size 4KB – 43 GB

○ Read 10 million random keys in database

○ Containerized using cgroups

○ Assigned the rest of system memory
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1) Evaluate the performance of isolation execution

2) Evaluate the performance of shared multitenant execution



Memory Contention Experiment
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Multitenancy – Impact on Memory Contention

● What did we learn?

○ Asymmetric performance degradation under contention

○ Static partitioning fails to consider various memory types
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Initial Design

PAMS: Multitenancy Resource Management Framework

• Unified Treatment of Memory Types

• Application-level Triggers

• Predictive Resource Allocation
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APP APP

Initial Design

PAMS

OS

Application-level Triggers

Predictive Resource 

Allocation

Unified Treatment of 

Memory Types
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APP

App triggers App triggers App triggers

Memory Tracking

(cgroup mem pressure, page fault)

Reclaim Algorithm

Page cache Heap



Unified Treatment of Memory Types
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PAMS

OS

Promotes

Reclaim Algorithm

Page cache
Heap

Memory Tracking

(cgroup mem pressure, page fault)



Unified Treatment of Memory Types
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OS
Reclaim Algorithm

Page cache
Heap

Priority labels informing eviction and reclaim policies

PAMS

Memory Tracking

(cgroup mem pressure, page fault)

Promotes



Application-level Triggers
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Predictive Resource Allocation
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PAMS

Memory Tracking

(cgroup mem pressure, page fault)

Resource Demand 

Forecast

Balance

Performance
Vs

Energy & Carbon 

constraints

Lightweight ML to 

adjust knobs



Summary and Future Work

- Identifies challenges of multi-tenancy on MicroDCs for hazard monitoring.

- Motivates the need of cross-layered approach to manage memory dynamically.

- Explore whether PAMS can be implemented without significant changes to OS.
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Thanks!

Long Tran (lht21@scarletmail.rutgers.edu)
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